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Abstract --- The coordinate rotation digital computer (CORDIC) algorithm is widely used in various technological fields such as digital 
signal processing (DSP), biomedical signal processing, robotics, communication systems, image processing etc. Due to ease of simple 
shift and add operations, the use of CORDIC based systems is increasing drastically. In this paper, some CORDIC based applications 
have been discussed along with its architectures and algorithms to reduce the number of iterations. To improve the system performance 
and to reduce the mean absolute percentage error (MAPE), some newly discovered algorithms such as double rotation CORDIC, triple 
rotation CORDIC, mixed scaling rotation (MSR), scaling free generalized micro-rotation, modified vector rotation (MVR) along with angle 
recoding (AR) and extended elementary angle set (EEAS) have also been discussed in detail. Use of CORDIC in applications such as in 
designing of digital filters, FFT computation, singular value decomposition (SVD) has also been reviewed here.  

Index Terms-- Micro-rotation, CORDIC, MSR, elementary angle set, angle recoding, double rotation, triple rotation. 

——————————   ����   —————————— 

1. INTRODUCTION 
The coordinate rotation digital computer (CORDIC) algorithm 
is a well-known iterative technique to perform various basic 
arithmetic operations including the computation of 
trigonometric functions, vector magnitude estimation, polar to 
rectangular transformation etc. It is preferred due to its simple 
shift-add operations, low cost and less complexity. CORDIC 
was invented in 1959 by Jack E. Volder [1], [2] for computation 
of trigonometric functions, multiplication and division. In 
1971, John Walther [3], [4] showed that by varying a few 
simple parameters, it could be used as a single algorithm for 
unified implementation of a wide range of elementary 
transcendental functions involving logarithms, exponentials 
and square roots. In [5], the author has proposed a Fourier 
transform computer with the help of CORDIC iterations. With 
the advancement in CORDIC algorithm, a pipelined CORDIC 
based IIR orthogonal digital filter [6] has been developed 
which improves the performance of the digital filter by 
reducing the iteration bound. Coarse grain pipelining and fine 
grain pipelining have been used in [6] to reduce the iteration 
bound of the digital IIR filter. Large number of iterations is the 
main drawback which affects the system speed adversely. 
Many algorithms such as angle recoding (AR) [7], EEAS [8], 
modified vector rotation (MVR) [9], mixed scaling rotation  
(MSR) [10], scaling free CORDIC algorithms [11], [12] etc. have 
been proposed to overcome this drawback and to improve the 
speed performance of the system. To speed up the system, 

parallel and pipelined CORDIC are used. 
In this paper, the concept of rotation and pseudo-rotation [13] 
has been discussed with the derivation of basic CORDIC 
equations. Normally CORDIC is used in circular rotation 
mode due to simplicity. The mode of CORDIC, either 
vectoring mode or rotational mode, is selected according to 
the requirement. Till now, some CORDIC based digital circuits 
as well as processors have been designed. CORDIC based 
complex multiplier has been discussed in [14] and such 
multiplier can be used in designing of digital filters with 
reduced power consumption as shown in [15]. With the 
advancement in CORDIC algorithm, double and triple 
rotation CORDIC have been proposed in [16] to minimize 
mean absolute percentage error (MAPE). This is not always be 
true to make CORDIC a fastest technique but it is 
recommended due to ease of its hardware implementation. 
According to the requirement, the development of CORDIC 
algorithm and architecture has taken place for achieving high 
throughput, high signal to quantization ratio (SQNR) and 
reduction of hardware complexity as well as latency of 
implementation. To achieve high throughput, pipelined and 
parallel CORDIC [17] can be used.        
The rest of the paper is organized as follows. Section 2 
comprises the basic arithmetic of conventional and advanced 
CORDIC algorithms with rotation and pseudo-rotation 
concept. Architectures of CORDIC have been reviewed in 
section 3. In section 4, applications of CORDIC have been 
described. The conclusion with future aspects has been 
discussed in section 5. 

2. ARITHMETIC OF CORDIC ALGORITHM 
In this section, the basic arithmetic of CORDIC algorithm has 
been described. Double and triple rotation algorithms have 
also been discussed here. 
Conventional CORDIC Algorithm 
Coordinate Rotation Digital Computer is abbreviated as 
CORDIC. The concept of CORDIC based on principle of 2-D 
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geometry. The CORDIC algorithm involves rotation of a 
vector ‘v’ on the XY-plane in circular, linear and hyperbolic 
coordinate systems depending on the function to be evaluated. 
This is an iterative convergence algorithm that performs a 
rotation iteratively using a series of specific incremental 
rotation angles selected so that each iteration is performed by 
shift and add operations. The norm of a vector in these 
coordinate systems is defined as �x� + μy2

∈, where µ  {1, 0,-1} 
represents a circular, linear or hyperbolic coordinate system 
respectively as shown in figure (1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Circular, Linear, Hyperbolic CORDIC 
The norm preserving rotation trajectory is a circle defined by 
x2 + y2 = 1 in the circular coordinate system. Similarly, the 
norm preserving rotation trajectory in the hyperbolic and 
linear coordinate systems is defined by the function x2 –y2 = 1 
and x=1, respectively.  
 Xi+1 = Ki[Xi – µYidi2-i ] ..….. (1) 
 Yi+1 = Ki[Yi + Xidi2-i ]    …....(2) 
 Zi+1 = Zi –di αi              …….(3) 
µ= 1, Circular rotations (basic CORDIC),                
αi= tan-1(2-i) 

µ= 0, Linear rotations, αi = 2-i 
µ= –1, Hyperbolic rotations, αi= tanh-1(2-i)   
The CORDIC method can be employed in two different 
modes, namely, the rotation mode and the vectoring mode. 
The rotation mode is used to perform the general rotation by a 
given angle θ. The vectoring mode computes unknown angle 
θ of a vector by performing a finite number of micro-rotations. 
The iterative formulation of a computational algorithm for its 
implementation was first described by Jack E. Volder for the 
computation of trigonometric functions, multiplication & 
division. CORDIC based computing received increased 
attention in 1971, When John Walther [3]-[4] showed that, by 
varying few simple parameters, it could be used as a single 
algorithm for computing logarithms, exponentials [18] & 
square roots along with those suggested by Volder [1].The 
popularity of CORDIC was much enhanced due to its 

potential for efficient & low cost method, but not highly 
accurate. Although CORDIC may not be the fastest technique 
to perform these operations, but it is attractive due to the 
simplicity of its hardware implementation. 
According to Volder the general rotation transform is 
X’ = X cosθ – Y sinθ …. (4) 
Y’ = X sinθ + Y cosθ …. (5) 
In matrix representation �x′y′

� = 	cosθ −sinθsinθ cosθ
� 	xy�  …. (6)  

Thus the rotational matrix is 

R = 	cosθ −sinθsinθ cosθ
�   ……… (7)                

The product of Rθ and R∅ equals to Rθ�∅ (rotation through θ 
then ∅) RθR∅ = 	cosθ −sinθsinθ cosθ

� 	cos∅ −sin∅sin∅ cos∅ � 
RθR∅ = �cos (θ + ∅) −sin (θ + ∅)sin(θ + ∅) cos (θ + ∅) �  ….. (8) 

A rotation matrix is a matrix that is used to perform a rotation 
in Euclidean space. It turns the whole space around the origin 
as shown in figure (2). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Representation of rotation matrix 
Rotating a Vector (Xi, Yi) By the Angle Αi (Rotations and 
Pseudo-rotations) 
A pseudo-rotation step as shown in figure (3)  increases the 
length of vector to: Ri+1 = Ri/cosαi = Ri/(1 + tan2αi)1/2 
[13],Whereas a real rotation does not change the length Ri of 
the vector Ri. Here our strategy is to eliminate the terms (1 + 
tan2αi)1/2 and choose the angles αi, so that tanαi is a power of 2. 
In real rotation the equations are: 

             Xi+1 = Xicosαi – Yi sinαi 

                       = (Xi – Yi tanαi)/ (1 + tan2αi)1/2 

                Yi+1 = Xi sinαi + Yicosαi 

                       = (Xi tanαi + Yi )/ (1 + tan2αi)1/2 

                Zi+1 = Zi – αi 

In real rotation, we are using circular rotation so that Ri = Ri+1, 
because both are the radius of circle. 
Thus     Ri2 = Ri+12   ….. (9) 
While in pseudo-rotation, we have 
Ri+1 = Ri/cosαi = Ri/(1 + tan2αi)1/2   …. (10) 
We can write equation (9) as 
    Xi2 + Yi2 = Xi+12 + Yi+12 
    Xi2 + Yi2 = Xi+12 + Xi+12tan2(αi + β),   
here angle β = angle EiOX 
                 Ri2 = Xi+12 sec2 (αi + β) 
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Figure 3: A pseudo-rotation step in CORDIC 

                 Xi+1 = Ricos(αi + β)        

                 Xi+1 = Ri (cosαi.cosβ – sinαi.sinβ)  

                      Xi+1 =Ri (cosαi.
���� – sinαi.

����) 
       Because    

                          cosβ=
����,   sinβ=

���� 
                  Xi+1 = Xicosαi – Yi sinαi 

                        = (Xi – Yi tanαi)/ (1 + tan2αi)
1/2, 

Similarly, we can write 
                      Yi+1 = Xi sinαi + Yicosαi 

                             = (Xi tanαi + Yi )/ (1 + tan2αi)1/2 

After pseudo-rotation, from equation (7) we get the equations 
for pseudo-rotation as: 

  Xi+1 = (Xi–Yitanαi) ….. (11)                                                                                                                                      

       Yi+1 = (Xi tanαi + Yi )  ….. (12) 

For m rotations the desired angle,  
Z = α1 + α2 + …………+αm    ……… (13) 

After m real rotations,  X" =  X$  cos(Σα�) – Y$ sin (Σα�)Y" =  X$ sin(Σα�) +  Y$ cos (Σα�)Z" =  Z – (Σα�)                       ( 
Where K = ∏(1 +  tan�α�)-/�  ………. (14) 
If the rotation angles are restricted such that tan (ɸ) = ±2-i , the 
multiplication by the tangent term is reduced to simple shift 
operation. Arbitrary angles of rotation are obtainable by 
performing a series of successively smaller elementary 
rotations. 
The iterative rotation can now be expressed as: 

/ X" = K(X$ cos(Σα�) – Y$ sin (Σα� ))Y" =  K(X$ sin(Σα�) +  Y$ cos (Σα�))Z" =  Z – (Σα�)                       ( 
Where K = ∏(1 +  tan�α�)-/�  ………. (14) 

The product of the Ki’s can be applied elsewhere in the system 
treated as a part of a system processing gain. That product 
approaches 0.6073 as the number of iterations goes to infinity. 
Therefore, the rotation algorithm as a gain An, of 
approximately 1.647. The exact gain depends on the number 

of iterations, and obeys the relation   
                                 An = ∏ √1 + 23��4  
The angle accumulator adds a third difference equation to the 
CORDIC algorithm:  
                                Zi+1 = Zi – di.tan-1(2-i) 
The CORDIC rotator is normally operated in one of the two 
modes. In the first mode (rotation mode), we rotates the input 
vector by a specified angle (given as an argument). In the 
second mode (vectoring mode), we rotates the input vector to 
the x-axis while recording the angle required to make that 
rotation. 
In rotation mode, the angle accumulator is initialized with the 
desired rotation angle. The rotation decision at each iteration 
is made to diminish the magnitude of the residual angle in the 
angle accumulator. The decision at each iteration is therefore 
based on the sign of the residual angle after each step. 
Naturally, if the input angle is already expressed in the binary 
arctangent base, the angle accumulator may be eliminated. For 
rotation mode, the cordic equations are:   

                               Xi+1 = Ki [Xi – Yidi2-i ], 

                               Yi+1 = Ki [Yi + Xidi2-i ],  

                               Zi+1 = Zi – di.tan-1(2-i) 

Where                    di = -1 if Zi < 0 otherwise +1 

In rotation mode these equations can be written as 
Xn = An [X0 cosZ0 – YosinZ0]   …… (15)      

Yn = An [Y0 cosZ0 + XosinZ0]   …… (16) 

Zn = 0,     An = ∏ √1 + 23�56  

In the vectoring mode, the CORDIC rotator rotates the input 
vector through whatever angle is necessary to align the result 
vector with the x axis. The result of the vectoring operation is 
a rotation angle and the scaled magnitude of the original 
vector (the x component of the result). The vectoring function 
works by seeking to minimize the y component of the residual 
vector at each rotation. The sign of the residual y component is 
used to determine which direction to rotate next. If the angle 
accumulator is initialized with zero, it will contain the 
traversed angle at the end of the iterations. In vectoring mode, 
the CORDIC equations are: 

                        Xi+1 = Ki [Xi – Yidi2-i ], 

                               Yi+1 = Ki [Yi + Xidi2-i ], 

                               Zi+1 = Zi – di.tan-1(2-i) 

Where                    di = +1 if Yi < 0 otherwise -1 

In vectoring mode these equations can be written as 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Hardware elements needed for the CORDIC method 
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Xn = An �X$� +  Y$�   ……… (17) 

Yn = 0,  

 Zn = Z0 + tan-1(Y0/X0)   ……. (18) 

An = ∏ √1 + 23�56  

Hardware elements of CORDIC method are shown in figure 
(4). If very high speed is not needed, a single adder and single 
shifter is sufficient (as in calculator). 
Basic CORDIC Iterations:  
In CORDIC iteration, an angle whose tangent is di2-i is 
pseudo-rotated in step i. Under this procedure, the angle is 
kept fixed, only direction di is to be changed. Table I describes 
the angle computation. 

                      Xi+1 = Xi – Yidi2-i, 

                           Yi+1 = Yi + Xidi2-i , 

                           Zi+1 = Zi – di.tan-1(2-i) = Zi – di.αi 

For example, we want to compute angle 40˚, then the angle 
will be calculated in the following manner. 
40˚ ɸ 45.0˚ – 26.6˚ + 14.0˚ + 7.1˚ + 3.6˚ – 1.8˚ – 0.9˚ -0.4˚ + 0.2˚ - 
0.1˚ = 40.1˚ 
TABLE I: CORDIC Rotation through an angle α  
Iteration, i Zi  -di.αi = -di.tan-1(2-

i) 
Zi+1 

  0    +40 -45.0 -5.0 
  1 -5.0 +26.6 +21.6 
  2    +21.6 -14.0 +7.6 
  3       +7.6 -7.1 +0.5 
  4 +0.5 -3.6 -3.1 
  5 -3.1 +1.8 -1.3 
  6  -1.3 +0.9 -0.4 
  7 -0.4 +0.4 +0.0 
  8 +0.0 -0.2 -0.2 
  9     -0.2 +0.1 -0.1 
 
Vector Rotation Methods: 
Three methods are discussed here to represent the CORDIC 
vector rotation. 
(1) Standard Method:  
x’ = x cosθ – y sinθ 
y’ = y cosθ + x sinθ 
Four multiplications and two additions are required. 
(2) Golub’s Method [19], [25]: 
x’ = [(x + y) (cosθ - sinθ) + x sinθ –y cosθ]       
y’ = [y cosθ + x sinθ]   ………(19) 
Three multiplications and five additions are required.  
(3) Buneman’s Method [20]: 

x’ = (1 + cosθ)(x – y tan
8�) – x 

y’ = (1 + cosθ) (x – y tan
8�) tan

8� + y    ……(20) 

Three multiplications and three additions are required 
because (1 + cosθ) and tanθ� are stored constants.              
Angle Recoding Scheme 
CORDIC equations (4), (5) can be written in matrix form as   �x�y�� = 	 cosθ sinθ−sinθ cosθ� 	xy�  ……… (21) 

This technique [7] is used to reduce the number of iterations 
by encoding the angle of rotation as a linear combination of a 
set of selected elementary angles of micro-rotation. Matrix 

related computations, special purpose algorithms (i.e. to 
reduce the complexity, to speed up the system etc.) and 
hardware are essential for faster computation of millions of 
rotation operation in DSP. Earlier the sign, u(i) = ±1, so n 
CORDIC iterations will always be required even if θ = 0, 
because each time u(i) = +1 or -1. In this algorithm u(i) = 0 is 
also permissible. This is useful if angle is known in advance. 
In applications such as FFT and CZT, the angle θ is known 
prior to computation. Hence, the trigonometric functions cosθ 
and sinθ can be evaluated and stored in advance. During 
computation, these prestored values will be retrieved and 
multiplied by x and y. This requires four real multiplications 
and two additions. This technique reduces the complexity 
upto 50%. The given angle θ is decomposed as  
θ = ∑  u(i) a(i)43-�;$ + ζ    ……… (22) 
Where angle approximation error 
 |ζ| < a(n-1) 
For z(0) = θ,  z(i+1) = z(i) – u(i) a(i),                      
Where i = 0, 1,⋯ ⋯ ⋯ ⋯ (n-1) 
       u(i) = sign of z(i) 
In angle recoding we follow the following two steps: 
θ = ∑  u(i) a(i)43-�;$ + ζ ,    for ζ< a(n − 1) 
       ∑ |u(i)|43-�;$  is minimized. 
Extended Elementary Angle Set Recoding (EEAS) Scheme 
In the conventional CORDIC the elementary angle set (EAS) is 
defined as S = {σ tan-1(2- ∈l)}, where σ  {-1, 1} and l ∈ {1, 
2,⋯ ⋯ ⋯, n-1}. In the angle recoding, the elementary angle set 
is defined as S = {σ tan-1(2- ∈l)}, where σ  {-1, 0, 1} and l ∈ {1, 
2,⋯ ⋯ ⋯, n-1}. AR scheme reduces number of iterations upto 
half that of previous one for same n bit accuracy. In vectoring 
mode, this method is termed as the backward angle recoding. 
Under EEAS [8] scheme the elementary angle set is defined as 
S = {tan-1(σ-23@A +σ�23@B)},    where σ-, σ�∈ {-1, 0, 1} and l1, l2∈ 
{1, 2,⋯ ⋯ ⋯, n-1}. Number of iterations reduces in EEAS in 
comparison to EAS. EEAS shows also the better error 
performance than that of previous one. The matrix 
representation of EEAS is as  

	x��-y��-�=D 1 −σ-(i)23@A(E) −  σ�(i)23@B(E)
σ-(i)23@A(E)  + σ�(i)23@B(E) 1 F ..(23) 

 
Scaling Factor K = ∏ K� 

Where Ki = 
-G[-�(IA(�)�JKA(E)  � IB(�)�JKB(E))B]   …….. (24) 

Double and Triple Rotation CORDIC 
This algorithm [16] accelerates the rotation computation of 
CORDIC algorithm by duplicating the elementary angle to be 
2θi. By using this algorithm, the basic CORDIC equations can 
be written in matrix form as  �x�y′� =	cosθ −sinθsinθ cosθ �N 	xy� 
Where r is a rotation degree, r = 1 for conventional algorithm, 
r = 2 for double rotation and r = 3 for triple rotation CORDIC. 
For double and triple rotation the angle is tan-1(2-i-1) and tan-
1(2-i-2) respectively. The scaling factor for these two 
algorithms is equal to 0.9219 and 0.9922 respectively while in 
case of conventional algorithm it is 0.60725. As described in 
[16], mean absolute percentage error (MAPE) for these two 
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algorithms is less than that of the conventional algorithm. 
MAPE is defined as  

M = 
-4 ∑ │ PE3 QEPRST │4�;-  ……… (25) 

Where Ai is the actual value, Fi is the forecast value and Aavg 
is the average actual value.     

  

3. ARCHITECTURES AND ADVANCED  

ALGORITHMS  BASED  ON CORDIC 
This section depicts the CORDIC architectures and algorithms 
along with their advantages and disadvantages.  

1.  Parallel Angle Recoding 
The schemes as described in [21], [22] like EAS and EEAS 
reduces the number of iterations but with these schemes a 
necessary condition is that the angle of rotation should be 
known in advance. If angle is not known in advance, these 
algorithms take more cycle time than that of the conventional 
algorithm. In such case parallel angle recoding is used. It can 
be used in conjunction with angle recoding method to gain the 
advantage of reduction of iteration count, without further 
increase in cycle time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: CORDIC Architecture for Parallel Angle Recoding 
In parallel angle recoding, elementary angle is tested in 
parallel and the direction for micro-rotation can be determined 
quickly to minimize the iteration period. During each 
iteration, residual angle z is passed to a set of n adder – 
subtractor units for the computation of ∆i = (zi – σi αi). The σi 
αi corresponding to the smallest difference (∆i)min is selected 
as the angle of rotation. Figure (5) shows the implementation 
of this algorithm. 

2. Hybrid CORDIC 
Based on radix – 2 decomposition, any rotation angle θ with n 
– bit precision can be expressed as a linear combination of 
angles from the set {2-I ; i∈ {1, 2, ……………, n-1}}, given by ∑ b�23�43-�;$  where bi∈ {0, 1}. Due to hardware complexity, radix 
– 2 decomposition is not used in the conventional CORDIC. 
This type of CORDIC algorithm [23], [24]  is also known as 
coarse – fine rotation CORDIC because the rotation angle is 
decomposed into two set of angles, one is coarse sub-angles 
and the other is fine sub-angles.   
The elementary angle set, S, is defined as the union of two 
sets, S1, S2 in the following ways:  S = S1 U S2,    
 Where S1 = tan-1(2-i),   i∈ {1, 2… p-1}, 
              S2 = 2-j, j ∈ {p, p+1…... n-1} 

 
 
 
 
 
 
 
 
 
 
 
Figure 6: Hybrid CORDIC Architecture 
In the second set j is sufficiently large (say j > n/3 - 1) such 
that tan αj = αj ;  where αj = tan-1(2-j). Let θ be the angle of 
rotation and it is decomposed into two set of sub-angles as θ = 
θM + θL; where the coarse sub-angles θM =∑ σ�tan3�(23�)V3-�;- ,  
∈σi  {1, -1} and the fine sub-angles    θL = ∑ d�(23�)43-�;V , di∈ 

{0,1}. In hybrid CORDIC operations, a combination of coarse 
and fine micro-rotations are used in two stages joined in 
cascade manner as shown in figure (6). In conventional 
method, the CORDIC equations in matrix form can be written 
as  �x�y�� = 	 1 −tanθtanθ 1 � 	xy� 
Here in hybrid CORDIC operations, the above matrix form 
can be represented in two stages. In first stage, the coarse sub-
angle rotation equations are as  	x``"y" � = � 1 −tanθYtanθY 1 � 	x$y$�   ….. (26) 

In second stage, the fine sub-angle rotation equations are as  	x4y4� = � 1 −tanθZtanθZ 1 � 	xYyY�   ……. (27) 

 
CORDIC Architectures 

Some useful basic architectures of CORDIC can be described 
as  
 

 
 
 
 
 
 
 
 
Figure 7: Taxonomy of CORDIC Architectures 
Folded architectures are obtained by duplicating each of the 
difference equations of CORDIC algorithm into hardware and 
time multiplexing all the iterations into a single functional 
unit. In bit serial architecture, the functional unit implements 
the logic for one bit of each iteration while in wold serial; the 
functional unit implements the logic for one word of each 
iteration. By using unfolded architectures, one can get high 
throughput due to elimination of read only memory. A simple 
iterative CORDIC architecture [18], [26] can be obtained by 
duplicating each of the three difference equations in hardware 
as shown in figure (8). 
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Figure  8: Iterative CORDIC Structure (Bit Parallel Design) 
The decision function di, is driven by the sign of the y or z 
register depending on whether it is operated in rotation mode 
or in vectoring mode  The initial values of x, y, z are loaded 
through multiplexers into the corresponding registers. The 
drawback of this iterative architecture or bit parallel design 
architecture is its slow design that requires a large number of 
logic cells. To overcome this drawback, bit serial arithmetic 
architecture is used. Bit serial arithmetic architecture work at 
much higher clock rate than the equivalent bit parallel design. 
In this architecture, three shift registers each having length 
equal to word width is used as shown in figure (9). 

3. Pipelined CORDIC 
Pipelining [27] is used to reduce the critical path so that the 
system may be speeded up. Pipelined CORDIC is used in 
fixed and adaptive filters, discrete orthogonal transforms, 
sinusoidal wave generation and other signal processing 
applications. In pipelined CORDIC shifters are eliminated 
because the shift operation can be hardwired with adders.  
For using three adders in each stage as shown in figure (10), 
the critical path is TA + TM + T2C, where TA is the 
computation time for an adder, TM is the computation time 
foe a multiplexer, T2C is the computation time for computing 
2’s complement operation. It uses pipeline registers in 
between each iteration phase. For angle known in advance, the 

sign of micro-rotation can be predetermined and the need of 
multiplexing can be avoided for reducing the critical path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Bit Serial Architecture 

4. Parallel CORDIC 
As shown in figure (11), the architecture of parallel CORDIC 
[17] is quite similar to pipelined CORDIC. In this algorithm, 
the structure for iterative CORDIC is instantiated multiple 
times simultaneously.  For any angle θ, we can decompose this 
angle into sub-angles and the computation of these angles can 
be processed in parallel. Angle θ can be written as  
θ = d0α0 + d`1α1 + ………….. + d43-α43-   …..(28) 
 Where αi = tan-1(2-i). 
Having latency equal to only one clock cycle, the parallel 
architectural configuration implements the shift-add/sub 
operations in parallel using an array of shift-add/sub stages. 
With multiple inputs and multiple outputs and high 
throughput, the parallel architecture is more efficient than the 
iterative architecture 

5. Differential CORDIC 
This type of CORDIC [28] provides faster and more efficient 
redundant number based implementation of both rotation 
mode and vectoring mode CORDIC. It uses some temporary 
variables. In Differential - CORDIC, the original CORDIC 
angle recursion is trans-formed in such a way that only 
absolute values of the angle are used. The angle equation Zi+1 
= Zi – di.αi can be written as │Ẑi+1│= ││Ẑi│- αi│ = ││Ẑi│+ 
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αi│. Where Zi+1 = di.Ẑi+1, di+1 = di.d̂i+1. Here Zi is the 
residual angle. Di = sign (Zi), d̂I = sign (Ẑi), αi = sub-rotation 
angle and α ̂I = -αi . This type of CORDIC uses redundant 
number system. It can serially process data and it provides 
data output in most significant digit first orderly. When the 
stages are connected in cascade manner, the processing time 
between two stages is over-lapped in a one-digit time-skewed 
manner, achieving high throughput.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Pipelined CORDIC Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Architecture of Parallel CORDIC 

6. MVR and MSR CORDIC 
The basic CORDIC algorithm is carried out only by a sequence 
of shift-and-add operations. Despite its simplicity, it 
encounters the disadvantage of large number of iterations, 
which impedes the speed performance in practical 
implementations. Modified vector rotation (MVR) [9] and 
Mixed scaling rotation (MSR) [10] algorithms are advanced 
CORDIC algorithms after AR CORDIC, fast CORDIC, and 
EEAS-CORDIC. Both the algorithms reduce the number of 
iterations and provide better performance. In MSR CORDIC, 
both the phases, rotation phase and scaling phase, are mixed. 
This algorithm achieves better signal to quantization noise 
ratio (SQNR). The performance analysis of this algorithm is 
based on the signal to quantization ratio (SQNR) and 
complexity. To store the continuous values of voltages 
(between 0 and 1) in 8 bits, the continuous values are forced to 
have the approximate values among 256 different values. This 
introduces a round-off error. It is termed as quantization noise 
(or quantization error). For a quantization accuracy of N bits 
per sample, the SQNR can be described as                  

 SQNR = 20 log10
abETcRKadeRcfEgRfEhc chEbi    ….. (29) 

In CORDIC, to calculate the SQNR, we use the following 
formula [9] 

             SQNR (dB) = 10 log-$ l -mnB  � mbBo 

Where ζm is the residual angle error and ζs is the quantization 
error in scaling. 
 Scaling approximation error is defined as 

ζs ≅ │1 - 
qrq │, where P is the scaling factor. 

In conventional CORDIC algorithm, using the concept of 
micro-rotation the target rotation angle can be decomposed 
into predefined elementary angles. Thus   CORDIC equations 
can be written in matrix form as  �x�y′� = s∏ � cosθn   −μ4sinθn   μ4sinθn   cosθn   �t3-4;$ u 	xy� 

�x�y′� = (∏ cosθnt3-4;$ ) s∏ � 1 −μ4tanθn   μ4tanθn   1 �t3-4;$ u 	xy� 
   Θ = ∑ μ4 8ct3-4;$ + ζ     ……. (30) 

Where Θ is the expected rotation angle; N is the number of 
rotations. Θn = tan3-( 234), where n denotes the elementary 
angle (or micro-angle); and n = 1,2,3,……………..,N-1. μ4 ∈ {1,-
1}, indicates the direction of rotation for n=1,2,3…N-1.; and ζ is 
the residual angle. In the modified vector rotation (MVR)-
CORDIC algorithm rotation procedure is modified to reduce 
the iteration as well as to accelerate the computational speed. 
In extended MVR-CORDIC, the elementary angle set is 
∈θ varctanx∑ µ�23y�z�;- {⎹ μ�  ∈ ~−1,0,1�, s� ∈ ~0,1,2. . S� �…… (31) 

1.ROTIONAL PHASE: for n = 0, 1, 2 …….  N - 1. �x(n + 1)y(n + 1)� = � 1 −μ4234μ4234 1 � �x(n)y(n)�     …… (32) 

Elementary angle            θn   =  µ4 tan3-(234) 
Accumulation angle         z(n+1) = z(n) + µ4θn 

2. SCALING PHASE:     	xtyt�=P �x(N)y(N)�   ……. (33) 

                              P = ∏ (√1 + 23�4t3-4;$ )-1 
Where I is defined as the Extending Factor and denotes the 
number of Signed Power-of-Two (SPT) terms; S denotes the 
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number of maximum shift.  
Since the scaling factor is always greater than 1 in the existing 
CORDIC algorithms, it is necessary to scale down the norm of 
the input vector to its initial value in the scaling phase. 
Furthermore, the SQNR performance will be degraded due to 
the growth of the scaling factor. To alleviate the degradation 
of the SQNR performance, it is better to keep the norm of the 
input vector as close as to unity, during each iteration. 
Additionally, if the norm of the rotated vector is moved to the 
same as the original vector in the final micro-rotation 
operation, we can reduce the overhead of the scaling 
operation. Based on the idea, we reformulate the iterative 
arithmetic as follows: Mixed Scaling Rotation for n = 1, 2…, N.                       

�x(n)y(n)�=D∑ η�(n)23��(4)��;- − ∑ μ�(n)23�E(4)z�;-∑ μ�(n)23�E(4)z�;- ∑ η�(n)23��(4)��;- F �x(n − 1)y(n − 1)�… (34)     

Elementary angle   θn = tan3- �∑ �E(4)�JfE(c)�E�A∑ ��(4)�Jb�(c)���A �   …….. (35) 

Updated accumulation angle    z(n) = z(n-1) + θn 
Amplifying factor in the nth rotation 
                 Pn = �G(∑ 23��(4)��;- )� + (∑ 23�E(4)z�;- )��-1 
Scaling factor:          P = ∏ P4t4;-  
Where n denotes the nth iteration and N denotes the total 
number of iterations. 
η�(n), µ�(n)∈ {-1, 0, 1}.In MSR CORDIC, η�(n) or µ�(n) may be 
equal to zero but it is invalid in conventional CORDIC.~t�(n), s�(n)�∈ {0, 1 ……………..S}, where S denotes the number of 
maximum shift, I and J denote the number of SPT terms of x 
(n) and y (n) respectively. I and J are selected as 
(1) Both I and J are equal to Nspt/2, when Nspt(no. of sum of 
power of two) is even. 
(2) I = (Nspt + 1)/2, and J = I – 1, when Nspt is odd. 
Equation (34) can be written as  
x(n) = ∑ η�(n)23��(4)��;- .x(n-1)− ∑ µ�(n)23�E(4)z�;- .y(n-1) 
y(n) = ∑ µ�(n)23�E(4)z�;- .x(n-1) + ∑ η�(n)23��(4)��;- .y(n-1) 
For Nspt = I + J = 3, there are four types of MSR-CORDIC 
have been shown in table II. It is impossible to use only the 
Scaling Type or Exchange-Scaling Type to implement the 
rotation circuits. The reason is that they perform only the 
scaling operation at fixed rotation angles 0, ±̟/2, ̟. Hence 
only Types II and III can be used to construct the rotation 
circuits. 
Scaling Free CORDIC: 
Under this algorithm [11], [29], Taylor series expansions of 
sine and cosine functions are used to avoid the scaling 
operation. Here a generalized sequence of micro-rotation to 
have adequate range of convergence (ROC) based on the 
selected order of approximation of the Taylor series has been 
suggested. The Taylor expansions of sine and cosine of an 
angle “α” are given by 

Sin α = α – (3ǃ)-1.α3 + (5ǃ)-1.α5 ……… (36a) 

Cosα = 1 – (2ǃ)-1.α2 + (4ǃ)-1.α4 …... (36b)                                                                                                 

After simulation it is noticed that the maximum percentage of 
error in sine and cosine functions for third order 
approximation is 0.0033% and 0.0168%, respectively. For angle 
α, CORDIC equations described by equations (1), (2) can be 
written as  
Xi+1 = (1–(2ǃ)-1.α2+(4ǃ)-1.α4...)Xi–(α–(3ǃ)-1.α3+(5ǃ)-1.α5…).Yi ...... (37a) 

Yi+1 = (α–(3ǃ)-1.α3+(5ǃ)-1.α5…)Xi+(1–(2ǃ)-1.α2+(4ǃ)-1.α4 ..).Yi ...... (37b) 

To implement (36) by shift-add operations, it is needed to 
approximate the factorial terms by the power of 2 values, 
replacing 3  by 23. For simplicity, Taylor series expansions ǃ

are used upto third order. Thus equation (24) can be written in 
matrix form as �X��-Y��-�=�(1 – (2ǃ3-). α�) −(α – (2)3�. α�)(α –  (2)3�. α�) (1 –  (2ǃ3-). α�) � �X�Y� �   …… (38) 

The expressions for the basic-shifts, the first elementary angle 
of rotation α1 and ROC for different orders of approximations 
for different word-length of implementations are as follows: 

Basic shift s = ��3@��B(4�-)ǃ4�- �   ….. (39) 

ROC = n1 × α1  ……… (40) 
Where b is the word-length, n1 is the number of micro-
rotations and α1 = 2-s. If the order of approximation increases,  

the basic-shift decreases, the first elementary angle of 
rotation increases and ROC is expanded. 

 TABLE II: For Nspt = 3, four types of MSR-CORDIC 

4. APPLICATIONS  OF CORDIC 
In this section, the applications of CORDIC algorithm have 
been described. Some applications have been discussed in 
brief while some applications have been discussed in detail as 
follows. 
The most basic applications of CORDIC includes the 
computation of sine and cosine for a given angle, polar to 
rectangular transformation, general vector rotation, Cartesian 
to polar transformation, arctangent computation, computation 
of vector magnitude, computation of inverse of an already 
computed function by CORDIC, calculation of arcsine and 
arccosine etc. CORDIC is also useful in direct frequency 
synthesis, in sine wave generation [30], motion estimation [31], 
digital to analog or analog to digital convertor [32], 
microcontrollers and also in communication technologies such 
as GSM, WCDMA modulator [33], digital modulation and 
coding for audio synthesis, direct and inverse kinematics 
computation for robot manipulation, planer and three 
dimensional vector rotation for graphics and animation. It is 
also used in radio frequency identification (RFID) to navigate 

 

Type 

  

I 

 

J 

 

Equation 

 I 
(Scaling 
Type)  

0 3 x(n)=η-(n)23�A(4).x(n-1)+η�(n)23�B(4).x(n-1)+η�(n)23��(4).x(n-1) 

y(n)=η-(n)23�A(4).y(n-1)+η�(n)23�B(4).y(n-1)+η�(n)23��(4).y(n-1)  

II 
(Norma
l Type) 

1 2 x(n)=η-(n)23�A(4).x(n-1)+η�(n)23�B(4).x(n-1) −µ-(n)23�A(4)y(n-1) 

y(n)=µ-(n)23�A(4)x(n-1)+η-(n)23�A(4).x(n-1)+η�(n)23�B(4).x(n-1) 

Iii 
(Norma
l Type)   

2 1 x(n)=η-(n)23�A(4).x(n-1) −µ-(n)23�A(4)y(n-1) −µ�(n)23�B(4)y(n-1) 

y(n)=µ-(n)23�A(4)x(n-1)+µ�(n)23�B(4)x(n-1)+η-(n)23�A(4).x(n-1) 

 IV 
(Exchan
ge-
Scaling 
Type) 

3 0 x(n)=−µ-(n)23�A(4)y(n-1) −µ�(n)23�B(4)y(n-1) −µ�(n)23��(4)y(n-1) 

y(n)=µ-(n)23�A(4)x(n-1)+µ�(n)23�B(4)x(n-1)+µ�(n)23��(4)x(n-1) 
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the location as shown in [34]. CORDIC algorithms are widely 
used in digital signal processing (DSP) applications such as 
computation of discrete Fourier transform (DFT), discrete 
cosine transform (DCT), discrete sine transform (DST), chirp Z 
transform (CZT), discrete Hartley transform (DHT) and in 
designing of digital filters. Some applications are as follows: 
CORDIC based FFT implementation: 
Fast Fourier Transform processor based on CORDIC [35] is 
implemented by replacing the sine and cosine twiddle factors 
in conventional FFT architecture by iterative CORDIC 
rotations which allows the reduction in read-only memory 
(ROM). The use of CORDIC in FFT results in the elimination 
of multipliers saves area, power and cost. The error analysis of 
CORDIC based FFT has been shown in [36]. There are three 
types of error in MSR-CORDIC based FFT, one is scaling error 
due to scaling factor, second is approximation error and the 
third is round off error due to using finite word length. The 
simple butterfly structure and its CORDIC based 
implementation is shown in figure (12), (13) respectively. Let a 
complex number be C such that 
 
 
 
 
 
 
 
 
 
Figure 12: Basic Butterfly Structure 

C = bR + jbI, then 

C.� ¡6 = (bR + jbI).cos
�¢   - j (bR + jbI).sin

�¢   

C.� ¡6 = (bRcos
�¢   + bIsin

�¢  ) + j. (bIcos
�¢   - bRsin 

�¢  ). 

Initially, X0 = a, Y0 = b, Z0 = 
�¢¡6   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: FFT Implementation With CORDIC 

In figure (13), aI’= aI + X, aR’ = aR + Y, 

                      bI’ = aI – X, bR’ = aR – Y 
Digital Filter Designing Using CORDIC: 
By using CORDIC, orthogonal digital filter can be designed as 
in [6], [27]. A filter structure is said to be orthogonal if its all 
internal variables are uncorrelated and have unit variance, 
assuming a white noise input. Orthogonal filters eliminate 
overflow oscillations, show low round off noise and invariant 

under frequency transformations. �x�y′�= 	cosθ −sinθsinθ cosθ � 	xy�, this matrix can be represented as 

shown in figure (14). 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Representation of CORDIC basic equations 
Sometimes the above matrix equations can be represented in 
figure as shown in figure (15).  
In [37], the author has used CORDIC for the implementation 
of finite impulse response. Transfer function approach as well 
as state space approach, both approaches can be used for filter 
designing. The schur algorithm [27] is used in designing of 
orthogonal digital lattice filter. In [38], [39], orthogonal digital 
filter and orthogonal double rotation (ODR) filter have been 
proposed respectively. Let the transfer function be  

T (z) = 
t (£)¤(¥) , where N (z) = ∑ N�z43�4�;$  and  

     D (z) = ∑ D�z43�4�;$ .  …… (41) 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Another Representation for CORDIC equations 
The necessary condition for such digital filter is  

E(z).E∗(z) = D (z).D∗(z) – N (z).N∗(z)   ……. (42) 

Where E∗(z) = z-n E (z-1).        ……. (43) 

Ng(z) = �ª(«)¬(«)�,   k0 = 
 (∞)®¯(∞),    Where k0 = �°$-°$�� 

The new denominator and numerator polynomials of transfer 
function is 
D’(z) = z-1(I-k0’k0)-1/2 {D(z) – k0’Ng(z)}, …… (44) 
Ng’(z)=(I–k0k0’)-1/2{Ng(z)–k0D(z)}  ….. (45) 
But in [6], the author has proposed more reliable cascade 
orthogonal digital IIR filter. In this filter, the individual section 
of cascade interconnection can be synthesized by using 
scattering matrix (SM) but to synthesize the whole cascade 
interconnection, chain scattering matrix (CSM) is used. The 
two delay sections, degree-1 and degree-2, have been used to 
reduce the order of cascade interconnected sections by one 
degree and by two degree respectively depending upon the 
poles being real or complex. Degree – 1 section has been 
shown in figure (16). 
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Figure 16: Degree – 1 section with CORDIC architecture for first order 
reduction 
CORDIC ALGORITHM FOR SVD 

For singular value decomposition (SVD), a M*M matrix is 

divided into [
Y�]*[

Y� ] blocks. Each block is a 2*2 matrix, which 

canbemapped to a CORDIC processor.Thetwo-sided rotation 
is applied to each 2*2 matrix to nullify the two off-diagonal 
elements. Singular value decomposition (SVD) [40] of a matrix 
is given by UΣVT, where U and V are orthogonal matrices and 
ɸ is a diagonal matrix of singular values.  �cosα- −sinα-sinα- cosα- � 	a bc d� �cosα� −sinα�sinα� cosα� � = �σ- 00 σ�� 
The values of α-and α� can be obtained in the following 
manner. α- + α� = tan-1l³��´3µo  …… (46) 

α2 – α1 = tan-1l³3�´�µo    ………. (47) 

Application of CORDIC in Communication system 
By selecting the required operating mode whether rotational 
or vectoring, CORDIC can be used in different modulation 
schemes like amplitude modulation (AM), frequency 
modulation (FM), phase modulation (PM) and also in digital 
modulation schemes. CORDIC can be used in (phase locked 
loop) PLL and direct digital synthesizer (DDS) in the 
following manner. In ADPLL [41], [42], all components are 
digitized. The difference between ADPLL & DPLL is that the 
digital PLL has an analog component called charge pump 
which translates the phase difference into corresponding 
voltage, but in an ADPLL, there is no analog components 
exists. The block diagram of ADPLL is shown in figure (17). 
The Basic building blocks of ADPLL includes frequency 
Sampling Filters (Hilbert filter), Phase detector (CORDIC 
Subsystem), Loop filter (F(z)), Direct Digital Synthesizer. 

Phase detection is done by using Hilbert filter & CORDIC 
algorithm. The phase difference is compensated by the 
controller or loop filter F(Z). It tunes the frequency of a direct 
digital synthesizer (DSS). 
 
 
 
 
 
 
 
 

Figure 17: Block diagram of All Digital Phase Locked Loop 
CORDIC can be used in direct digital synthesizer (DDS)as 

shown in figure (18). Direct Digital Synthesis (DDS) is an 
electronic method for digitally creating arbitrary waveforms 
and frequencies from a single, fixed source frequency. The 
main components of DDS are:  phase accumulator, phase-to-
amplitude conversion (often a sine look-up table) and 
DAC.The digital word in the phase register, M represents the 
amount; the phase accumulator is incremented each clock 
cycle. If fclk is the clock frequency, then the frequency of the 

output sine wave is calculated as   ¶out = 
Y∗·³@¸�c  

 
 
 
 
 
 
 
 
 
 
Figure 18: Block diagram of Direct Digital Synthesizer using CORDIC 
subsystem 

5. CONCLUSION 
In this paper, we have reviewed the existing CORDIC 
algorithms, architectures and applications. Some advanced 
CORDIC algorithms and its DSP based applications have been 
discussed specially. Due to simplicity of operation, CORDIC 
technique is preferred in various fields including digital signal 
processing (DSP), advanced digital signal processing (ADSP), 
communication, graphics etc. There are many algorithms 
which are used to reduce the number of iterations but latency 
of hardware complexity, error performance, signal to 
quantization ratio (SQNR) etc. are also considerable factors 
which affect the system performance. Where angle is known 
in advance and high SQNR is required, mixed scaling rotation 
(MSR) CORDIC algorithm is most suitable. Where hardware 
complexity is major issue, generalized micro-rotation 
algorithm is used.  For high throughput applications, 
pipelined CORDIC architecture is used. In future, we would 
have more advanced version of existing CORDIC algorithm 
and it would be useful for designing of high speed processors.   
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